Stem Cell Research Bringing Doctors Close to HIV Cure
February 2018

After 30 years and thanks to extensive stem cell research, scientists are closer than ever before to finding a cure for Human Immunodeficiency Virus, or HIV. Led by Dr. Scott Kitchen, an associate professor of hematology and oncology at UCLA’s David Geffen School of Medicine, the group of US scientists from California, Maine, and Washington have successfully engineered blood-forming stem cells that can carry genes capable of detecting and destroying HIV-infected cells.

But it’s not just that the stem cells were able to destroy the HIV-infected cells, they persisted in doing so for over two years without any negative effects. This equates to long-term immunity and the potential to completely eradicate the disease which, after 1981, quickly became the world’s leading infectious killer.

Kitchen received just over $1.7 million from California’s Stem Cell Agency to carry out his research. California has a special interest in the research as the state ranks second in the United States in cases of HIV. Over 170,000 people are infected, incurring healthcare costs which are being billed to the state. The total has continued to rise and now equates to over $1.8 billion per year.

California’s Stem Cell Agency maintains that “A curative treatment is a high priority. A stem cell based therapy offers promise for this goal, by providing an inexhaustible source of protected, HIV specific immune cells that would provide constant surveillance and potential eradication of the virus in the body.”

In the grant details, Kitchen identifies the potential impact of his research:

“The study will allow a potentially curative treatment for HIV infection, which currently doesn’t exist. This will eliminate the need to administer antiviral medication for a lifetime.”

According to his study published in the journal PLOS Pathogens, Kitchen’s curative treatment involves the use of a ‘optimized’ chimeric antigen receptor (CAR) gene that interferes with interactions between HIV and CD4 cells (white blood cells).When a part of the CAR molecule binds to HIV, it’s instructed to kill the HIV-infected cell. These CAR proteins proved highly effective as they killed HIV-infected cells throughout the lymphoid tissues and gastrointestinal tract, two major sites in HIV replication.

If Kitchen and his team are able to effectively kill off infected cells, they have the potential to save millions of those currently infected with HIV across the globe and can also prevent the virus from advancing into Acquired Immunodeficiency Syndrome, or AIDS. In both cases, the immune system is completely broken down. T-cells, which normally fight and prevent all kinds of bacteria and viruses in the body, are weakened and depleted allowing common and usually treatable infections to become deadly.

Throughout the 80’s and early 90’s, long before stem cell research, the number of people carrying HIV continued to climb as it continued to spread and in 1995, complications from AIDS became the leading cause of death for adults aged 25-44. Shortly thereafter, in 1997, the first truly effective treatment was developed. Highly active antiretroviral therapy (HAART) became the standard and there was a 47% decline in death rates.

By the early 2000’s, the World Health Organization set a goal to treat 3 million people and by 2010 there were 20 different treatment options available. 5.25 million people had treatment and over 1 million more were set to start treatment soon.

While these numbers are a massive improvement and the FDA (Food and Drug Administration) is continuing to approve and regulate HIV medical products, the disease is being slowed rather than halted. According to UNAIDS, over 35 million people are still currently living with HIV/AIDS.

Back in 2011, Kitchen co-authored a study about stem cell research in the treatment of HIV/AIDS in the journal Current Opinion in HIV and AIDS. In it, he said that stem cell-based strategies for treating HIV were “a novel approach toward reconstituting the ravaged immune system with the ultimate aim of clearing the virus from the body.”

Since then, he’s continued to reach higher towards that ultimate aim.

Stem cell treatments utilize patients’ own cells for testing on humans and stem cell advances provide the very necessary opportunity for large clinical trials. It is Kitchen’s hope – and it’s safe to assume the worlds’ hope – that stem cell innovation can one day effectively eliminate the disease, therefore preventing its spread, saving billions of dollars in healthcare costs, and – most importantly – saving lives.

Twitter Feed